IPAL Biotech



Instalasi pengolahan air limbah (IPAL) (wastewater treatment plant, WWTP), adalah sebuah struktur yang dirancang untuk membuang limbah biologis dan kimiawi dari air sehingga memungkinkan air tersebut untuk digunakan pada aktivitas yang lain. Fungsi dari IPAL mencakup:

Pengolahan air limbah pertanian, untuk membuang kotoran hewan, residu pestisida, dan sebagainya dari lingkungan pertanian.
Pengolahan air limbah perkotaan, untuk membuang limbah manusia dan limbah rumah tangga lainnya.
Pengolahan air limbah industri, untuk mengolah limbah cair dari aktivitas manufaktur sebuah industri dan komersial, termasuk juga aktivitas pertambangan.
Meski demikian, dapat juga didesain sebuah fasilitas pengolahan tunggal yang mampu melakukan beragam fungsi. Beberapa metode seperti biodegradasi diketahui tidak mampu menangani air limbah secara efektif, terutama yang mengandung bahan kimia berbahaya.

Definisi atau Pengertian IPAL :
IPAL / Instalasi Pengolahan Air Limbah adalah suatu perangkat peralatan teknik beserta perlengkapannya yang memproses / mengolah cairan sisa proses produksi pabrik, sehingga cairan tersebut layak dibuang ke lingkungan .


Manfaat Instalasi pengolahan air limbah (IPAL) :
IPAL itu sangat bermanfaat bagi manusia serta makhluk hidup lainnya, antara lain:
  1. Mengolah Air Limbah domestik atau industri, agar air tersebut dapat di gunakan kembali sesuai kebutuhan masing-masing.
  2. Agar air limbah yang akan di alirkan kesungai tidak tercemar.
  3. Agar Biota-biota yang ada di sungai tidak mati.
Tujuan Instalasi pengolahan air limbah (IPAL) :
Tujuan IPAL yaitu untuk menyaring dan membersihkan air yang sudah tercemar dari baik domestik maupun bahan kimia industri.

Pengolahan Secara Fisika 
Pada umumnya, sebelum dilakukan pengolahan lanjutan terhadap air buangan, diinginkan agar bahan-bahan tersuspensi berukuran besar dan yang mudah mengendap atau bahan-bahan yang terapung disisihkan terlebih dahulu. Penyaringan (screening) merupakan cara yang efisien dan murah untuk menyisihkan bahan tersuspensi yang berukuran besar. Bahan tersuspensi yang mudah mengendap dapat disisihkan secara mudah dengan proses pengendapan. Parameter desain yang utama untuk proses pengendapan ini adalah kecepatan mengendap partikel dan waktu detensi hidrolis di dalam bak pengendap. 

Proses flotasi banyak digunakan untuk menyisihkan bahan-bahan yang mengapung seperti minyak dan lemak agar tidak mengganggu proses pengolahan berikutnya. Flotasi juga dapat digunakan sebagai cara penyisihan bahan-bahan tersuspensi (clarification) atau pemekatan lumpur endapan (sludge thickening) dengan memberikan aliran udara ke atas (air flotation). Proses filtrasi di dalam pengolahan air buangan, biasanya dilakukan untuk mendahului proses adsorbsi atau proses reverse osmosis-nya, akan dilaksanakan untuk menyisihkan sebanyak mungkin partikel tersuspensi dari dalam air agar tidak mengganggu proses adsorbsi atau menyumbat membran yang dipergunakan dalam proses osmosa.

Proses adsorbsi, biasanya dengan karbon aktif, dilakukan untuk menyisihkan senyawa aromatik (misalnya: fenol) dan senyawa organik terlarut lainnya, terutama jika diinginkan untuk menggunakan kembali air buangan tersebut. Teknologi membran (reverse osmosis) biasanya diaplikasikan untuk unit-unit pengolahan kecil, terutama jika pengolahan ditujukan untuk menggunakan kembali air yang diolah. Biaya instalasi dan operasinya sangat mahal. 

Pengolahan Secara Kimia 
Pengolahan air buangan secara kimia biasanya dilakukan untuk menghilangkan partikel-partikel yang tidak mudah mengendap (koloid), logam-logam berat, senyawa fosfor, dan zat organik beracun; dengan membubuhkan bahan kimia tertentu yang diperlukan. Penyisihan bahan-bahan tersebut pada prinsipnya berlangsung melalui perubahan sifat bahan-bahan tersebut, yaitu dari tak dapat diendapkan menjadi mudah diendapkan (flokulasi-koagulasi), baik dengan atau tanpa reaksi oksidasi-reduksi, dan juga berlangsung sebagai hasil reaksi oksidasi. 

Pengendapan bahan tersuspensi yang tak mudah larut dilakukan dengan membubuhkan elektrolit yang mempunyai muatan yang berlawanan dengan muatan koloidnya agar terjadi netralisasi muatan koloid tersebut, sehingga akhirnya dapat diendapkan. Penyisihan logam berat dan senyawa fosfor dilakukan dengan membubuhkan larutan alkali (air kapur misalnya) sehingga terbentuk endapan hidroksida logam-logam tersebut atau endapan hidroksiapatit. 

Endapan logam tersebut akan lebih stabil jika pH air > 10,5 dan untuk hidroksiapatit pada pH > 9,5. Khusus untuk krom heksavalen, sebelum diendapkan sebagai krom hidroksida [Cr(OH)3], terlebih dahulu direduksi menjadi krom trivalent dengan membubuhkan reduktor (FeSO4, SO2, atau Na2S2O5). 

Koagulasi & Flokulasi Penyisihan bahan-bahan organik beracun seperti fenol dan sianida pada konsentrasi rendah dapat dilakukan dengan mengoksidasinya dengan klor (Cl2), kalsium permanganat, aerasi, ozon hidrogen peroksida. Pada dasarnya kita dapat memperoleh efisiensi tinggi dengan pengolahan secara kimia, akan tetapi biaya pengolahan menjadi mahal karena memerlukan bahan kimia.

Pengolahan secara Biologi 
Semua air buangan yang biodegradable dapat diolah secara biologi. Sebagai pengolahan sekunder, pengolahan secara biologi dipandang sebagai pengolahan yang paling murah dan efisien. Dalam beberapa dasawarsa telah berkembang berbagai metode pengolahan biologi dengan segala modifikasinya. 

Pada dasarnya, reaktor pengolahan secara biologi dapat dibedakan atas dua jenis, yaitu: 
  1. Reaktor pertumbuhan tersuspensi (suspended growth reaktor); 
  2. Reaktor pertumbuhan lekat (attached growth reaktor). 
Di dalam reaktor pertumbuhan tersuspensi, mikroorganisme tumbuh dan berkembang dalam keadaan tersuspensi. Proses lumpur aktif yang banyak dikenal berlangsung dalam reaktor jenis ini. Proses lumpur aktif terus berkembang dengan berbagai modifikasinya, antara lain: oxidation ditch dan kontak-stabilisasi. Dibandingkan dengan proses lumpur aktif konvensional, oxidation ditch mempunyai beberapa kelebihan, yaitu efisiensi penurunan BOD dapat mencapai 85%-90% (dibandingkan 80%-85%) dan lumpur yang dihasilkan lebih sedikit. Selain efisiensi yang lebih tinggi (90%-95%), kontak stabilisasi mempunyai kelebihan yang lain, yaitu waktu detensi hidrolis total lebih pendek (4-6 jam). 

Proses kontak-stabilisasi dapat pula menyisihkan BOD tersuspensi melalui proses absorbsi di dalam tangki kontak sehingga tidak diperlukan penyisihan BOD tersuspensi dengan pengolahan pendahuluan. Kolam oksidasi dan lagoon, baik yang diaerasi maupun yang tidak, juga termasuk dalam jenis reaktor pertumbuhan tersuspensi. 

Untuk iklim tropis seperti Indonesia, waktu detensi hidrolis selama 12-18 hari di dalam kolam oksidasi maupun dalam lagoon yang tidak diaerasi, cukup untuk mencapai kualitas efluent yang dapat memenuhi standar yang ditetapkan. Di dalam lagoon yang diaerasi cukup dengan waktu detensi 3-5 hari saja. Di dalam reaktor pertumbuhan lekat, mikroorganisme tumbuh di atas media pendukung dengan membentuk lapisan film untuk melekatkan dirinya. 

Berbagai modifikasi telah banyak dikembangkan selama ini, antara lain: 
1. trickling filter 
2. cakram biologi 
3. filter terendam 
4. reaktor fludisasi Seluruh modifikasi ini dapat menghasilkan efisiensi penurunan BOD sekitar 80%-90%. 

Ditinjau dari segi lingkungan dimana berlangsung proses penguraian secara biologi, proses ini dapat dibedakan menjadi dua jenis: 
1. Proses aerob, yang berlangsung dengan hadirnya oksigen; 
2. Proses anaerob, yang berlangsung tanpa adanya oksigen. 
Apabila BOD air buangan tidak melebihi 400 mg/l, proses aerob masih dapat dianggap lebih ekonomis dari anaerob. Pada BOD lebih tinggi dari 4000 mg/l, proses anaerob menjadi lebih ekonomis.


Untuk info lebih lengkap, hubungi :

FLOWRENCE
081219090777
087876790777
PIN BB : 5AE48C52
www.ipalbiotech1.blogspot.com